Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 381, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049746

RESUMO

BACKGROUND: The extremely halophilic archaeon Haloferax (Hfx.) alexandrinus DSM 27206 T was previously documented for the ability to biosynthesize silver nanoparticles while mechanisms underlying its silver tolerance were overlooked. In the current study, we aimed to assess the transcriptional response of this haloarchaeon to varying concentrations of silver, seeking a comprehensive understanding of the molecular determinants underpinning its heavy metal tolerance. RESULTS: The growth curves confirmed the capacity of Hfx. alexandrinus to surmount silver stress, while the SEM-EDS analysis illustrated the presence of silver nanoparticles in cultures exposed to 0.5 mM silver nitrate. The RNA-Seq based transcriptomic analysis of Hfx. alexandrinus cells exposed to 0.1, 0.25, and 0.5 mM silver nitrate revealed the differential expression of multiple sets of genes potentially employed in heavy-metal stress response, genes mostly related to metal transporters, basic metabolism, oxidative stress response and cellular motility. The RT-qPCR analysis of selected transcripts was conducted to verify and validate the generated RNA-Seq data. CONCLUSIONS: Our results indicated that copA, encoding the copper ATPase, is essential for the survival of Hfx. alexandrinus cells in silver-containing saline media. The silver-exposed cultures underwent several metabolic adjustments that enabled the activation of enzymes involved in the oxidative stress response and impairment of the cellular movement capacity. To our knowledge, this study represents the first comprehensive analysis of gene expression in halophillic archaea facing increased levels of heavy metals.


Assuntos
Haloferax volcanii , Haloferax , Nanopartículas Metálicas , Haloferax/genética , Haloferax/metabolismo , Nitrato de Prata/metabolismo , Prata/farmacologia , Perfilação da Expressão Gênica , Haloferax volcanii/genética
2.
Sci Total Environ ; 895: 165133, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364839

RESUMO

Karst aquifers are important water resources for drinking water supplies worldwide. Although they are susceptible to anthropogenic contamination due to their high permeability, there is a lack of detailed knowledge on the stable core microbiome and how contamination may affect these communities. In this study, eight karst springs (distributed across three different regions in Romania) were sampled seasonally for one year. The core microbiota was analysed by 16S rRNA gene amplicon sequencing. To identify bacteria carrying antibiotic resistance genes and mobile genetic elements, an innovative method was applied, consisting of high-throughput antibiotic resistance gene quantification performed on potential pathogen colonies cultivated on Compact Dry™ plates. A taxonomically stable bacterial community consisting of Pseudomonadota, Bacteroidota, and Actinomycetota was revealed. Core analysis reaffirmed these results and revealed primarily freshwater-dwelling, psychrophilic/psychrotolerant species affiliated to Rhodoferax, Flavobacterium, and Pseudomonas genera. Both sequencing and cultivation methods indicated that more than half of the springs were contaminated with faecal bacteria and pathogens. These samples contained high levels of sulfonamide, macrolide, lincosamide and streptogramins B, and trimethoprim resistance genes spread primarily by transposase and insertion sequences. Differential abundance analysis found Synergistota, Mycoplasmatota, and Chlamydiota as suitable candidates for pollution monitoring in karst springs. This is the first study highlighting the applicability of a combined approach based on high-throughput SmartChip™ antibiotic resistance gene quantification and Compact Dry™ pathogen cultivation for estimating microbial contaminants in karst springs and other challenging low biomass environments.


Assuntos
Antibacterianos , Microbiota , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Bactérias/genética , Resistência Microbiana a Medicamentos/genética
3.
Front Microbiol ; 14: 962452, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825091

RESUMO

Introduction: Karst caves are characterized by relatively constant temperature, lack of light, high humidity, and low nutrients availability. The diversity and functionality of the microorganisms dwelling in caves micro-habitats are yet underexplored. Therefore, in-depth investigations of these ecosystems aid in enlarging our understanding of the microbial interactions and microbially driven biogeochemical cycles. Here, we aimed at evaluating the diversity, abundance, distribution, and organic substrate preferences of microbial communities from Peștera cu Apa din Valea Leșului (Leșu Cave) located in the Apuseni Mountains (North-Western Romania). Materials and Methods: To achieve this goal, we employed 16S rRNA gene amplicon sequencing and community-level physiological profiling (CLPP) paralleled by the assessment of environmental parameters of cave sediments and water. Results and Discussion: Pseudomonadota (synonym Proteobacteria) was the most prevalent phylum detected across all samples whereas the abundance detected at order level varied among sites and between water and sediment samples. Despite the general similarity at the phylum-level in Leșu Cave across the sampled area, the results obtained in this study suggest that specific sites drive bacterial community at the order-level, perhaps sustaining the enrichment of unique bacterial populations due to microenvironmental conditions. For most of the dominant orders the distribution pattern showed a positive correlation with C-sources such as putrescine, γ-amino butyric acid, and D-malic acid, while particular cases were positively correlated with polymers (Tween 40, Tween 80 and α-cyclodextrin), carbohydrates (α-D-lactose, i-erythritol, D-mannitol) and most of the carboxylic and ketonic acids. Physicochemical analysis reveals that sediments are geochemically distinct, with increased concentration of Ca, Fe, Al, Mg, Na and K, whereas water showed low nitrate concentration. Our PCA indicated the clustering of different dominant orders with Mg, As, P, Fe, and Cr. This information serves as a starting point for further studies in elucidating the links between the taxonomic and functional diversity of subterranean microbial communities.

4.
Environ Microbiome ; 17(1): 44, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978381

RESUMO

BACKGROUND: Movile Cave (SE Romania) is a chemoautotrophically-based ecosystem fed by hydrogen sulfide-rich groundwater serving as a primary energy source analogous to the deep-sea hydrothermal ecosystems. Our current understanding of Movile Cave microbiology has been confined to the sulfidic water and its proximity, as most studies focused on the water-floating microbial mat and planktonic accumulations likely acting as the primary production powerhouse of this unique subterranean ecosystem. By employing comprehensive genomic-resolved metagenomics, we questioned the spatial variation, chemoautotrophic abilities, ecological interactions and trophic roles of Movile Cave's microbiome thriving beyond the sulfidic-rich water. RESULTS: A customized bioinformatics pipeline led to the recovery of 106 high-quality metagenome-assembled genomes from 7 cave sediment metagenomes. Assemblies' taxonomy spanned 19 bacterial and three archaeal phyla with Acidobacteriota, Chloroflexota, Proteobacteria, Planctomycetota, Ca. Patescibacteria, Thermoproteota, Methylomirabilota, and Ca. Zixibacteria as prevalent phyla. Functional gene analyses predicted the presence of CO2 fixation, methanotrophy, sulfur and ammonia oxidation in the explored sediments. Species Metabolic Coupling Analysis of metagenome-scale metabolic models revealed the highest competition-cooperation interactions in the sediments collected away from the water. Simulated metabolic interactions indicated autotrophs and methanotrophs as major donors of metabolites in the sediment communities. Cross-feeding dependencies were assumed only towards 'currency' molecules and inorganic compounds (O2, PO43-, H+, Fe2+, Cu2+) in the water proximity sediment, whereas hydrogen sulfide and methanol were assumedly traded exclusively among distant gallery communities. CONCLUSIONS: These findings suggest that the primary production potential of Movile Cave expands way beyond its hydrothermal waters, enhancing our understanding of the functioning and ecological interactions within chemolithoautotrophically-based subterranean ecosystems.

5.
Sci Rep ; 11(1): 18633, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545115

RESUMO

In this study we aimed to compare the mineralogical, thermal, physicochemical, and biological characteristics of recent organic carbon-rich sediments ('sapropels') from three geographically distant Romanian lakes (Tekirghiol and Amara, SE Romania, and Ursu, Central Romania) with distinct hydrogeochemical origins, presently used for pelotherapy. The investigated lakes were classified as inland brackish Na-Cl-sulfated type (Amara), coastal moderately saline and inland hypersaline Na-Cl types (Tekirghiol and Ursu, respectively). The settled organic matter is largely composed of photosynthetic pigments derived from autochthonous phytoplankton. Kerogen was identified in the sapropel of coastal Tekirghiol Lake suggesting its incipient maturation stage. The mineral composition was fairly similar in all sapropels and mainly consisted of quartz, calcite, and aragonite. Smectite, illite, mixed layer smectite/illite appeared as major clay components. Potentially toxic elements were found in low concentrations. The physical properties (i.e., specific heat, thermal conductivity and retentivity) and cation exchange capacity are comparable to other peloids used for therapy. This study is the first comprehensive multi-approached investigation of the geochemical nature of recent sapropels in Romanian saline lakes and thus contributes to expanding our knowledge on the origin and physicochemical qualities of organic matter-rich peloids with therapeutic uses.

6.
Environ Microbiol ; 23(7): 3523-3540, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-31894632

RESUMO

Ursu Lake is located in the Middle Miocene salt deposit of Central Romania. It is stratified, and the water column has three distinct water masses: an upper freshwater-to-moderately saline stratum (0-3 m), an intermediate stratum exhibiting a steep halocline (3-3.5 m), and a lower hypersaline stratum (4 m and below) that is euxinic (i.e. anoxic and sulphidic). Recent studies have characterized the lake's microbial taxonomy and given rise to intriguing ecological questions. Here, we explore whether the communities are dynamic or stable in relation to taxonomic composition, geochemistry, biophysics, and ecophysiological functions during the annual cycle. We found: (i) seasonally fluctuating, light-dependent communities in the upper layer (≥0.987-0.990 water-activity), a stable but phylogenetically diverse population of heterotrophs in the hypersaline stratum (water activities down to 0.762) and a persistent plate of green sulphur bacteria that connects these two (0.958-0.956 water activity) at 3-3.5 to 4 m; (ii) communities that might be involved in carbon- and sulphur-cycling between and within the lake's three main water masses; (iii) uncultured lineages including Acetothermia (OP1), Cloacimonetes (WWE1), Marinimicrobia (SAR406), Omnitrophicaeota (OP3), Parcubacteria (OD1) and other Candidate Phyla Radiation bacteria, and SR1 in the hypersaline stratum (likely involved in the anaerobic steps of carbon- and sulphur-cycling); and (iv) that species richness and habitat stability are associated with high redox-potentials. Ursu Lake has a unique and complex ecology, at the same time exhibiting dynamic fluctuations and stability, and can be used as a modern analogue for ancient euxinic water bodies and comparator system for other stratified hypersaline systems.


Assuntos
Bactérias , Lagos , Bactérias/genética , Cloreto de Sódio , Enxofre , Microbiologia da Água
7.
FEMS Microbiol Lett ; 366(18)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31742601

RESUMO

Adaptive strategies responsible for heavy metal tolerance were explored in the extremely halophilic archaeon Halomicrobium mukohataei DSM 12286. The tested strain was seemingly able to overcome silver-induced oxidative stress (assessed by malondialdehyde quantification, catalase assay and total antioxidant capacity measurement) mainly through non-enzymatic antioxidants. Energy dispersive spectrometry analysis illustrated the presence of colloidal silver in Hmc. mukohataei cultures exposed to AgNO3. Bright-field and transmission electron microscopy images, as well as dynamic light scattering analysis, demonstrated the presence of intracellular nanoparticles, mostly spherical, within a size range of 20-100 nm. As determined by the zeta potential measurement, the biosynthesized nanoparticles were highly stable, with a negative surface charge. Our research is a first attempt in the systematic study of the oxidative stress and intracellular silver nanoparticle accumulation, generated by exposure to silver ions, in members of Halobacteria class, thus broadening our knowledge on mechanisms supporting heavy metal tolerance of microbial cells living under saline conditions.


Assuntos
Adaptação Fisiológica , Halobacteriaceae/efeitos dos fármacos , Halobacteriales/efeitos dos fármacos , Nitrato de Prata/toxicidade , Catalase/metabolismo , Halobacteriaceae/metabolismo , Halobacteriaceae/ultraestrutura , Halobacteriales/metabolismo , Halobacteriales/ultraestrutura , Malondialdeído/metabolismo , Testes de Sensibilidade Microbiana , Nanopartículas/química , Nanopartículas/ultraestrutura , Estresse Oxidativo , Tamanho da Partícula , Prata/química , Prata/metabolismo , Eletricidade Estática
8.
Sci Rep ; 7(1): 6150, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28733590

RESUMO

Present-day terrestrial analogue sites are crucial ground truth proxies for studying life in geochemical conditions close to those assumed to be present on early Earth or inferred to exist on other celestial bodies (e.g. Mars, Europa). Although hypersaline sapropels are border-of-life habitats with moderate occurrence, their microbiological and physicochemical characterization lags behind. Here, we study the diversity of life under low water activity by describing the prokaryotic communities from two disparate hypersaline sapropels (Transylvanian Basin, Romania) in relation to geochemical milieu and pore water chemistry, while inferring their role in carbon cycling by matching taxa to known taxon-specific biogeochemical functions. The polyphasic approach combined deep coverage SSU rRNA gene amplicon sequencing and bioinformatics with RT-qPCR and physicochemical investigations. We found that sapropels developed an analogous elemental milieu and harbored prokaryotes affiliated with fifty-nine phyla, among which the most abundant were Proteobacteria, Bacteroidetes and Chloroflexi. Containing thirty-two candidate divisions and possibly undocumented prokaryotic lineages, the hypersaline sapropels were found to accommodate one of the most diverse and novel ecosystems reported to date and may contribute to completing the phylogenetic branching of the tree of life.


Assuntos
Archaea/classificação , Benzopiranos/análise , DNA Ribossômico/genética , Sedimentos Geológicos/microbiologia , Substâncias Húmicas/análise , Archaea/genética , Archaea/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Chloroflexi/genética , Chloroflexi/isolamento & purificação , DNA Bacteriano/genética , Lagos/microbiologia , Filogenia , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Romênia , Análise de Sequência de DNA
9.
Pest Manag Sci ; 73(7): 1428-1437, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27862922

RESUMO

BACKGROUND: Colorado potato beetle (CPB) has become the biggest enemy of cultivated potato worldwide. One of the most effective sources of resistance to CPB is Solanum chacoense, an accession with a high leptine glycoalkaloid content. The aim of our study was to assay the repellence and toxicity of S. chacoense, its somatic hybrids (SHs) and their backcross progenies (BC1 ) with potato for CPB adults and larvae. Transgenic S. chacoense, deficient in DNA mismatch repair (MMR), was also used to produce SHs, in order to increase homeologous recombination and hence introgression of wild-species DNA into the potato gene pool. RESULTS: Wild-type SH was highly resistant to CPB. Resistance to CPB of BC1 progenies showed a 1:3 inheritance pattern. MMR-deficient SHs performed better in the resistance analysis. Most MMR-deficient SHs had a similar toxicity as S. chacoense and an intensely repellent effect on CPB adults. Resistance of SHs and BC1 clones may be attributed to leptine biosynthesis, which was confirmed using a RAPD marker. CONCLUSION: This is the first report of SHs and their progenies exhibiting both antibiosis and antixenosis against CPB. Resistant SHs are an important step forward in combating this voracious pest of potato. © 2016 Society of Chemical Industry.


Assuntos
Antibiose/genética , Besouros/efeitos dos fármacos , Reparo de Erro de Pareamento de DNA , Solanum tuberosum/genética , Animais , Comportamento Alimentar/efeitos dos fármacos , Controle de Insetos/métodos , Larva/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Alcaloides de Solanáceas/biossíntese , Solanum tuberosum/química , Solanum tuberosum/metabolismo
10.
FEMS Microbiol Lett ; 363(14)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27279625

RESUMO

Heavy metals are dense chemicals with dual biological role as micronutrients and intoxicants. A few hypersaline environmental systems are naturally enriched with heavy metals, while most metal-contaminated sites are a consequence of human activities. Numerous halotolerant and moderately halophilic Bacteria possess metal tolerance, whereas a few archaeal counterparts share similar features. The main mechanisms underlying heavy metal resistance in halophilic Bacteria and Archaea include extracellular metal sequestration by biopolymers, metal efflux mediated by specific transporters and enzymatic detoxification. Biotransformation of metals by halophiles has implications both for trace metal turnover in natural saline ecosystems and for development of novel bioremediation strategies.


Assuntos
Adaptação Biológica , Archaea/fisiologia , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Metais Pesados/metabolismo , Archaea/classificação , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Biodegradação Ambiental , Transporte Biológico , Membrana Celular/metabolismo , Inativação Metabólica , Metais Pesados/farmacologia , Células Procarióticas/fisiologia , Salinidade
11.
ISME J ; 9(12): 2642-56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25932617

RESUMO

Hypersaline meromictic lakes are extreme environments in which water stratification is associated with powerful physicochemical gradients and high salt concentrations. Furthermore, their physical stability coupled with vertical water column partitioning makes them important research model systems in microbial niche differentiation and biogeochemical cycling. Here, we compare the prokaryotic assemblages from Ursu and Fara Fund hypersaline meromictic lakes (Transylvanian Basin, Romania) in relation to their limnological factors and infer their role in elemental cycling by matching taxa to known taxon-specific biogeochemical functions. To assess the composition and structure of prokaryotic communities and the environmental factors that structure them, deep-coverage small subunit (SSU) ribosomal RNA (rDNA) amplicon sequencing, community domain-specific quantitative PCR and physicochemical analyses were performed on samples collected along depth profiles. The analyses showed that the lakes harbored multiple and diverse prokaryotic communities whose distribution mirrored the water stratification patterns. Ursu Lake was found to be dominated by Bacteria and to have a greater prokaryotic diversity than Fara Fund Lake that harbored an increased cell density and was populated mostly by Archaea within oxic strata. In spite of their contrasting diversity, the microbial populations indigenous to each lake pointed to similar physiological functions within carbon degradation and sulfate reduction. Furthermore, the taxonomy results coupled with methane detection and its stable C isotope composition indicated the presence of a yet-undescribed methanogenic group in the lakes' hypersaline monimolimnion. In addition, ultrasmall uncultivated archaeal lineages were detected in the chemocline of Fara Fund Lake, where the recently proposed Nanohaloarchaeota phylum was found to thrive.


Assuntos
Archaea/classificação , Bactérias/classificação , Bactérias/isolamento & purificação , Lagos/microbiologia , Cloreto de Sódio/metabolismo , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , DNA Ribossômico/genética , Lagos/química , Metano/metabolismo , Dados de Sequência Molecular , Filogenia , Romênia , Cloreto de Sódio/análise
12.
Curr Opin Microbiol ; 25: 73-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26025020

RESUMO

Haloalkaliphiles are double extremophilic organisms thriving both at high salinity and alkaline pH. Although numerous haloalkaliphilic representatives have been identified among Archaea and Bacteria over the past 15 years, the adaptations underlying their prosperity at haloalkaline conditions are scarcely known. A multi-level adaptive strategy was proposed to occur in haloalkaliphilic organisms isolated from saline alkaline and soda environments including adjustments in the cell wall structure, plasma membrane lipid composition, membrane transport systems, bioenergetics, and osmoregulation. Isolation of chemolithoautotrophic sulfur-oxidizing γ-Proteobacteria from soda lakes allowed the elucidation of the structural and physiological differences between haloalkaliphilic (prefer NaCl) and natronophilic (prefer NaHCO3/Na2CO3, i.e. soda) microbes.


Assuntos
Adaptação Fisiológica , Archaea/fisiologia , Firmicutes/fisiologia , Gammaproteobacteria/fisiologia , Lagos/microbiologia , Bicarbonato de Sódio/metabolismo , Microbiologia da Água , Archaea/crescimento & desenvolvimento , Gammaproteobacteria/crescimento & desenvolvimento , Gammaproteobacteria/isolamento & purificação , Lagos/química , Filogenia , Cloreto de Sódio/metabolismo , Enxofre/metabolismo
13.
Extremophiles ; 19(2): 525-37, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25680859

RESUMO

Perennially stratified salt lakes situated in the Transylvanian Basin (Central Romania) were surveyed for the diversity of culturable halophilic archaea (Fam. Halobacteriaceae). The physical and chemical characteristics of the waters indicated that all the investigated lakes were meromictic and neutral hypersaline. Samples collected from upper, intermediate, and deeper water layers and sediments were used for the isolation of halophilic strains followed by 16S rRNA gene-based identification and phenotypic characterization. The phylogenetic analysis of the 16S rRNA gene sequences revealed that all 191 isolates reported in this study and 43 strains previously isolated were affiliated with the family Halobacteriaceae and classified to 18 genera. Haloferax was the most frequently isolated genus (~47 %), followed by Halobacterium spp. (~12 %), and Halorubrum spp. (~11 %). Highest culturable diversity was detected in Brâncoveanu Lake, the oldest and saltiest of all studied lakes, while the opposite was observed in the most stable and least human-impacted Fara Fund Lake. One strain from Ursu Lake might possibly constitute a novel Halorubrum species as shown by phylogenetic analysis. Several haloarchaeal taxa recently described in Asian (i.e., Iran, China) saline systems were also identified as inhabiting the Transylvanian salt lakes thus expanding our knowledege on the geographic distribution of Halobacteriaceae.


Assuntos
Halobacteriaceae/genética , Lagos/microbiologia , Microbiota , Tolerância ao Sal , Halobacteriaceae/classificação , Halobacteriaceae/isolamento & purificação , Lagos/química , Filogenia , RNA Ribossômico 16S/genética , Salinidade
14.
Extremophiles ; 18(2): 399-413, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24414798

RESUMO

Saline, meromictic lakes with significant depth are usually formed as a result of salt mining activity. Ocnei Lake is one of the largest Transylvanian (Central Romania) neutral, hypersaline lake of man-made origin. We aimed to survey the seasonal dynamics of archaeal diversity in the water column of Ocnei Lake by employing microbiological methods as well as molecular techniques based on the sequence analysis of the 16S rRNA gene. We found that archaeal diversity in the water column increased with depth and salinity, with 8 OTUs being detected in the epilimnion compared to 21 found in the chemocline, and 32 OTUs in the monimolimnion. Down to 3.5 m depth, the archaeal community was markedly dominated by the presence of an unclassified archaeon sharing 93% sequence identity to Halogeometricum spp. At the chemocline, the shift in archaeal community composition was associated with an increase in salinity, the main factor affecting the vertical distribution of archaeal assemblages. It appears that the microoxic and hypersaline monimolimnion is populated by several major haloarchaeal taxa, with minor fluctuations in their relative abundances throughout all seasons. The culturable diversity was reasonably correlated to the dominant OTUs obtained by molecular methods. Our results indicate that Ocnei Lake represents a relatively stable extreme habitat, accommodating a diverse and putatively novel archaeal community, as 30% of OTUs could not be classified at the genus level.


Assuntos
Halobacteriaceae/isolamento & purificação , Lagos/microbiologia , Microbiota , Halobacteriaceae/genética , Lagos/química , RNA Ribossômico 16S/genética , Romênia , Salinidade
15.
FEMS Microbiol Lett ; 330(1): 1-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22339687

RESUMO

Archaea that live at high salt concentrations are a phylogenetically diverse group of microorganisms. They include the heterotrophic haloarchaea (class Halobacteria) and some methanogenic Archaea, and they inhabit both oxic and anoxic environments. In spite of their common hypersaline environment, halophilic archaea are surprisingly diverse in their nutritional demands, range of carbon sources degraded (including hydrocarbons and aromatic compounds) and metabolic pathways. The recent discovery of a new group of extremely halophilic Euryarchaeota, the yet uncultured Nanohaloarchaea, shows that the archaeal diversity and metabolic variability in hypersaline environments is higher than hitherto estimated.


Assuntos
Archaea/classificação , Archaea/fisiologia , Biodiversidade , Ecossistema , Salinidade , Sais/metabolismo , Archaea/genética , Carbono/metabolismo , Metabolismo Energético , Redes e Vias Metabólicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...